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1 In the expansion of(x2 −
a
x
)7

, the coefficient ofx5 is −280. Find the value of the constanta. [3]

2 A function f is such that f(x) =
√(x + 3

2
) + 1, for x ≥ −3. Find

(i) f −1(x) in the formax2 + bx + c, wherea, b andc are constants, [3]

(ii) the domain of f−1. [1]
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The diagram shows a plan for a rectangular parkABCD, in whichAB = 40 m andAD = 60 m. Points
X andY lie on BC andCD respectively andAX, XY andYA are paths that surround a triangular
playground. The length ofDY is x m and the length ofXC is 2x m.

(i) Show that the area,A m2, of the playground is given by

A = x2 − 30x + 1200. [2]

(ii) Given thatx can vary, find the minimum area of the playground. [3]

4 The liney =
x
k
+ k, wherek is a constant, is a tangent to the curve 4y = x2 at the pointP. Find

(i) the value ofk, [3]

(ii) the coordinates ofP. [3]
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The diagram shows a triangleABC in which A has coordinates(1, 3), B has coordinates(5, 11) and
angleABC is 90◦. The pointX (4, 4) lies onAC. Find

(i) the equation ofBC, [3]

(ii) the coordinates ofC. [3]

6 (i) Show that the equation 2 cosx = 3 tanx can be written as a quadratic equation in sinx. [3]

(ii) Solve the equation 2 cos 2y = 3 tan 2y, for 0◦ ≤ y ≤ 180◦. [4]

7 The position vectors of the pointsA andB, relative to an originO, are given by

−−→
OA = (1

0
2
) and

−−→
OB = ( k

−k
2k
),

wherek is a constant.

(i) In the case wherek = 2, calculate angleAOB. [4]

(ii) Find the values ofk for which
−−→
AB is a unit vector. [4]

8 (a) In a geometric progression, all the terms are positive, the second term is 24 and the fourth term
is 131

2. Find

(i) the first term, [3]

(ii) the sum to infinity of the progression. [2]

(b) A circle is divided inton sectors in such a way that the angles of the sectors are in arithmetic
progression. The smallest two angles are 3◦ and 5◦. Find the value ofn. [4]

[Questions 9, 10 and 11 are printed on the next page.]
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y = 9
2 + 3x

The diagram shows part of the curvey =
9

2x + 3
, crossing they-axis at the pointB (0, 3). The point

A on the curve has coordinates(3, 1) and the tangent to the curve atA crosses they-axis atC.

(i) Find the equation of the tangent to the curve atA. [4]

(ii) Determine, showing all necessary working, whetherC is nearer toB or to O. [1]

(iii) Find, showing all necessary working, the exact volume obtained when the shaded region is
rotated through 360◦ about thex-axis. [4]

10 A curve is defined forx > 0 and is such that
dy
dx

= x +
4

x2
. The pointP (4, 8) lies on the curve.

(i) Find the equation of the curve. [4]

(ii) Show that the gradient of the curve has a minimum value whenx = 2 and state this minimum
value. [4]

11
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The diagram shows a sector of a circle with centreO and radius 20 cm. A circle with centreC and
radiusx cm lies within the sector and touches it atP, Q andR. AnglePOR = 1.2 radians.

(i) Show thatx = 7.218, correct to 3 decimal places. [4]

(ii) Find the total area of the three parts of the sector lying outside the circle with centreC. [2]

(iii) Find the perimeter of the regionOPSR bounded by the arcPSR and the linesOP andOR. [4]
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